Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 401: 123745, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33113728

RESUMEN

This study provided a holistic understanding of the sources, fate and behaviour of 142 compounds of emerging concern (CECs) throughout a river catchment impacted by 5 major urban areas. Of the incoming 169.3 kg d-1 of CECs entering the WwTWs, 167.9 kg d-1 were present in the liquid phase of influent and 1.4 kg d-1 were present in the solid phase (solid particulate matter, SPM). Analysis of SPM was important to determine accurate loads of incoming antidepressants and antifungal compounds, which are primarily found in the solid phase. Furthermore, these classes and the plasticiser, bisphenol A (BPA) were the highest contributors to CEC load in digested solids. Population normalised loads showed little variation across the catchment at 154 ± 12 mg d-1 inhabitant-1 indicating that population size is the main driver of CECs in the studied catchment. Across the catchment 154.6 kg d-1 were removed from the liquid phase during treatment processes. CECs discharged into surface waters from individual WwTWs contributed between 0.19 kg d-1 at WwTW A to 7.3 kg d-1 at WwTW E, which correlated strongly with the respective contributing populations. Spatial and temporal variations of individual CECs and their respective classes were found in WwTW influent (both solid (influentSPM) and liquid phases (influentAQ)) throughout the catchment, showing that different urban areas impact the catchment in different ways, with key variables being lifestyle, use of over-the-counter pharmaceuticals and industrial activity. Understanding of both spatial and temporal variation of CECs at the catchment level helped to identify possible instances of direct disposal, as in the case of carbamazepine. Analysis of surface waters throughout the catchment showed increasing mass loads of CECs from upstream of WwTW A to downstream at WwTW D, showing clear individual contributions from WwTWs. Many CECs were ubiquitous throughout the river water in the catchment. Daily loads ranged from 0.005 g d-1 (ketamine, WwTW A) up to 1890.3 g d-1 (metformin, WwTW C) for the 84/138 CECs that were detected downstream of the WwTWs. For metformin this represents the equivalent of ∼1,890 tablets (1,000 mg per tablet) dissolved in the river water downstream of WwTW C.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Ríos , Eliminación de Residuos Líquidos , Contaminantes Químicos del Agua/análisis
2.
Anal Bioanal Chem ; 412(23): 5563-5581, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32648103

RESUMEN

This manuscript presents the development, validation and application of a multi-residue supercritical fluid chromatography coupled with tandem mass spectrometry method for the analysis of 140 chiral and non-chiral chemicals of emerging concern in environmental samples, with 81 compounds being fully quantitative, 14 semi-quantitative and 45 qualitative, validated according to European Medicine Agency (EMA) guidelines (European Medicines Agency 2019). One unified LC-MS method was used to analyse all analytes, which were split into three injection methods to ensure sufficient peak resolution. The unified method provided an average of 113% accuracy and 4.5% precision across the analyte range. Limits of detection were in the range of 35 pg L-1-0.7 µg L-1, in both river water and wastewater, with an average LOD of 33 ng L-1. The method was combined with solid-phase extraction and applied in environmental samples, showing very good accuracy and precision, as well as excellent chromatographic resolution of a range of chiral enantiomers including beta-blockers, benzodiazepines and antidepressants. The method resulted in quantification of 75% of analytes in at least two matrices, and 56% in the trio of environmental matrices of river water, effluent wastewater and influent wastewater, enabling its use in monitoring compounds of environmental concern, from their sources of origin through to their discharge into the environment.

3.
Water Res ; 182: 116015, 2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32622132

RESUMEN

This study provides an insight into the prevalence of (fluoro)quinolones (FQs) and their specific quinolone qnrS resistance gene in the Avon river catchment area receiving treated wastewater from 5 wastewater treatment plants (WWTPs), serving 1.5 million people and accounting for 75% of inhabitants living in the catchment area in the South West of England.. Ofloxacin, ciprofloxacin, nalidixic acid and norfloxacin were found to be ubiquitous with daily loads reaching a few hundred g/day in wastewater influent and tens of g/day in receiving waters. This was in contrast to other FQs analysed: flumequine, nadifloxacin, lomefloxacin, ulifloxacin, prulifloxacin, besifloxacin and moxifloxacin, which were hardly quantified. Enantiomeric profiling revealed that ofloxacin was enriched with the S-(-)-enantiomer, likely deriving from its prescription as the more potent enantiomerically pure levofloxacin, alongside racemic ofloxacin. While ofloxacin's enantiomeric fraction (EF) remained constant, high stereoselectivity was observed in the case of its metabolite ofloxacin-N-oxide. The removal efficiency of quinolones during wastewater treatment at 5 WWTPs utilising either trickling filters (TF) or activated sludge (AS), was compound and wastewater treatment process dependent, with AS providing better efficiency than TF. The qnrS resistance gene was ubiquitous in wastewater. Its removal was WWTP treatment process dependent with TF performing best and resulting in significant removal of the gene (from 28 to 75%). AS underperformed with only 9% removal in the case of activated sludge and actual increase in the gene copy number within sequencing batch reactors (SBRs). Interestingly, the data suggests that higher removal of antibiotics could be linked with high prevalence of the gene (SBR and WWTP E) and vice versa, low removal of antibiotic is correlated with lower prevalence of the gene in wastewater effluent (TF, WWTP B and D). This is especially prominent in the case of ofloxacin and could indicate that AS might be facilitating antimicrobial resistance (AMR) prevalence to higher extent than TF. Wastewater-based epidemiology (WBE) was also applied to monitor any potential misuse (e.g. direct disposal) of FQs in the catchment. In most cases higher use of antibiotics with respect to official statistics (i.e. ciprofloxacin, ofloxacin) was observed, which suggests that FQs management practice require further attention.


Asunto(s)
Quinolonas , Contaminantes Químicos del Agua/análisis , Antibacterianos , Inglaterra , Fluoroquinolonas , Ríos , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
4.
Sci Total Environ ; 735: 139433, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32498013

RESUMEN

This paper reports the application of wastewater-based epidemiology (WBE) for the monitoring of one city in the UK in years 2014-2018 as a means of 1) exploring relative temporal changes of illicit drug usage trends across 5 sampling weeks in 5 years, (2) assessing policy impact in reducing drug consumption, focussing particularly on mephedrone, which was classified as a class B drug in the UK in 2010, and the effects of subsequent regulation such as the novel psychoactive substances (NPS) bill of 2016, (3) investigating temporal changes in consumption of prescription pharmaceuticals vs illicit drug usage, and (4) comparing consumption of prescription drugs with WBE to enable more accurate verification of prescription drugs with abuse potential. Mephedrone was quantified only for the first two years of the study, 2014-2015, and remained undetected for the next three years of the study. This shows that given enough time changes in drug policy can have an effect on drug consumption. However, after the introduction of the 2016 NPS bill, between the third and fourth study years, there was an observable increase in the consumption of "classic" drugs of abuse such as cocaine, MDMA and ketamine suggesting a shift away from novel psychoactives. The unique prescription dataset allowed for a more accurate calculation of heroin consumption using morphine by examining other sources morphine. Additionally, for compounds with controlled prescription like methadone, trends in consumption estimated by wastewater and trends in prescription correlated. Wastewater-based epidemiology is a powerful tool for examining whole populations and determining the efficacy and direction of government actions on health, as it can, alongside prescription and wider monitoring data, provide a clear insight into what is being consumed by a population and what action is needed to meet required goals.


Asunto(s)
Trastornos Relacionados con Sustancias , Contaminantes Químicos del Agua/análisis , Ciudades , Humanos , Detección de Abuso de Sustancias , Reino Unido , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas Residuales
5.
Environ Int ; 127: 558-572, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30981914

RESUMEN

Chiral pharmaceutically active compounds (cPACs) are not currently governed by environmental regulation yet are expected to be in the future. As cPACs can exert stereospecific toxicity in the aquatic environment, it is essential to better understand their stereoselective behaviour here. Therefore, this study aims to provide a new perspective towards comprehensive evaluation of cPACs at a river catchment level, including their stereochemistry as a chemical phenomenon driving fate of chiral molecules in the environment. A large spatial and temporal monitoring program was performed in Southwest England. It included 5 sewage treatment works and the receiving waters of the largest river catchment in Southwest England. Simultaneously, lab-scale microcosm studies in simulated activated sludge bioreactors and river water microcosm were performed to evaluate stereoselective degradation of cPACs. A multi-residue enantioselective method allowed the analysis of a total of 18 pairs of enantiomers and 3 single enantiomers in wastewater and river water samples. Our monitoring program revealed: (1) spatial and temporal variations of cPACs in influent wastewaters resulting from different patterns of usage as well as an (2) enantiomeric enrichment of cPACs, likely due to human metabolism, despite their commercialization as racemic mixtures. A similar chiral signature was observed in effluent and receiving waters. Stereoselective degradation was observed in trickling filters (TF) for naproxen, ketoprofen, cetirizine and 10,11-dihydroxy-10-hydroxycarbamazepine, in sequencing batch reactors (SBR) for ifosfamide and in activated sludge (AS) for cetirizine. The extent of enantiomer-specific fate was wastewater treatment dependent in the case of naproxen (TF showed higher stereoselectivity than AS and SBR) and cetirizine (TF and AS showed higher stereoselectivity than SBR) due to differing microbial population. Furthermore, stereoselective degradation of naproxen was highly variable among STWs using similar treatments (TF) and operating in the same region. Microbial stereoselective degradation was also confirmed by both activated and river water simulated microcosm for chloramphenicol, ketoprofen, indoprofen, naproxen and 10,11-dihydroxy-10-hydroxycarbamazepine. Results from our large scale river catchment monitoring study and lab simulated microcosm show wide-ranging implications of enantiomerism of cPACs on environmental risk assessment (ERA). As two enantiomers of the same compound show different biological effects (e.g. toxicity), their non-racemic presence in the environment might lead to inaccurate ERA. This is because current ERA approaches do not require analysis at enantiomeric level.


Asunto(s)
Aguas Residuales/química , Contaminantes Químicos del Agua/química , Reactores Biológicos , Inglaterra , Humanos , Ríos/química , Aguas del Alcantarillado/química , Estereoisomerismo , Contaminantes Químicos del Agua/análisis
6.
Anal Bioanal Chem ; 411(11): 2261-2271, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30796487

RESUMEN

Reported herein is the development of an analytical method for the detection of four oxidative stress biomarkers in wastewater using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS) and solid phase extraction (SPE). The following four biomarkers of oxidative stress and lipid peroxidation have been investigated: hydroxynonenal-mercapturic acid (HNE-MA), 8-iso-prostglandin F2beta (8-iso-PGF2ß), 8-nitroguanine (8-NO2Gua) and 8-hydroxy-2-deoxyguanosine (8-OHdG). The method showed very good performance: accuracy (> 87%), precision (> 90%), method quantification limits (1.3-3.0 ng L-1) and biomarker stability in wastewater in the case of HNE-MA, 8-OHdG and 8-iso-PGF2ß. In contrast, 8-NO2Gua was found to be less stable in wastewater, which affected its method performance: accuracy (> 63%), precision (> 91%) and method quantification limits (85.3 ng L-1). Application of the developed method resulted in, for the first time, HNE-MA being successfully observed and quantified within wastewater over a study period of a week (displayed average daily loads per capita of 48.9 ± 4.1 mg/1000/people/day). 8-iso-PGF2ß was detected with good intensity but could not be quantified due to co-elution with other isomers. 8-OHdG was detected, albeit at < MQL. This study demonstrates the potential for expanding on the possible endogenous biomarkers of health used in urban water fingerprinting to aid in measuring health in near-real time on a community-wide scale.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Estrés Oxidativo , Espectrometría de Masas en Tándem/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis , 8-Hidroxi-2'-Desoxicoguanosina , Acetilcisteína/análisis , Aldehídos/análisis , Biomarcadores/análisis , Desoxiguanosina/análogos & derivados , Desoxiguanosina/análisis , Guanina/análogos & derivados , Guanina/análisis , Humanos , Límite de Detección , Peroxidación de Lípido , Prostaglandinas F/análisis
7.
J Hazard Mater ; 348: 39-46, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29367131

RESUMEN

Analysis of drugs and pharmaceuticals in the environment is typically performed with non-chiral chromatographic techniques. The environmental risks posed by chiral compounds analysed in this way must therefore be assumed to be independent of chirality, meaning that each enantiomer is equally potent in toxicity and long-lived in stability. This manuscript examines the degradation of each of the four isomers of ephedrine in river simulating microcosms and links this to toxicity data obtained by exposing three different organisms (D. magna, P. subcapitata and T. thermophila) to each of the isomers individually. Microcosms showed that significant degradation only occurred in biotic conditions and that only two isomers (1R,2S-(-)-ephedrine, 1S,2S-(+)-pseudoephedrine) degraded significantly over a period of fourteen days. This is concerning because at least one of the non-degraded isomers (1S,2R-(+)-ephedrine) has been observed in wastewater effluent, which discharges directly into rivers, meaning these isomers could be persistent in the environment. We also observed formation of 1S,2R-(+)-ephedrine in single isomer 1R,2S-(-)-ephedrine river simulating microcosms. Human liver microsome assays and mass spectrometry based data mining revealed that 1S,2R-(+)-ephedrine is not human derived but it could be formed as a results of microbial metabolic processes. Across all three organisms tested the persistent isomers (1S,2R-(+)-ephedrine and 1R,2R-(-)-pseudoephedrine) were more toxic than those that undergo degradation; meaning that if these isomers are entering or formed in the environment they might represent a potentially hazardous contaminant.


Asunto(s)
Exposición a Riesgos Ambientales , Efedrina/química , Efedrina/toxicidad , Seudoefedrina/química , Animales , Biodegradación Ambiental , Daphnia/efectos de los fármacos , Humanos , Microsomas Hepáticos/efectos de los fármacos , Seudoefedrina/toxicidad , Algas Marinas/efectos de los fármacos , Estereoisomerismo , Tetrahymena thermophila/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...